
Security Assessment

Crypto Chronic
CertiK Assessed on Jun 29th, 2023

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

1 Major 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

3 Minor 1 Resolved, 2 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

4 Informational 1 Resolved, 3 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY CRYPTO CHRONIC

CertiK Assessed on Jun 29th, 2023

Crypto Chronic

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Ethereum (ETH)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 06/29/2023

KEY COMPONENTS

N/A

CODEBASE
Breeder.sol, Chronic.sol, Feeder.sol

View All in Codebase Page

COMMITS
MD5 (Breeder.sol) = e76f584e770977ee55dc38ed16d9d9fe,

MD5 (Chronic.sol) = 264563bd10ad22f47985ae519f13fb2c,

MD5 (Feeder.sol) = 200fcf011ad7e8cbda414128e293bada

View All in Codebase Page

8
Total Findings

2
Resolved

0
Mitigated

0
Partially Resolved

6
Acknowledged

0
Declined

TABLE OF CONTENTS CRYPTO CHRONIC

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

CCK-01 : Centralization Related Risks

BCC-01 : Unused Return Value

BCC-02 : Weak PRNG

CCK-03 : Usage of `transfer`/`send` for sending Ether

BCC-03 : Reusable `signature`

CCK-04 : Missing Error Messages

CCK-05 : Missing Emit Events

CCP-01 : Missing Zero Address Validation

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS CRYPTO CHRONIC

CODEBASE CRYPTO CHRONIC

Repository

Breeder.sol, Chronic.sol, Feeder.sol

Commit

MD5 (Breeder.sol) = e76f584e770977ee55dc38ed16d9d9fe,

MD5 (Chronic.sol) = 264563bd10ad22f47985ae519f13fb2c,

MD5 (Feeder.sol) = 200fcf011ad7e8cbda414128e293bada

CODEBASE CRYPTO CHRONIC

AUDIT SCOPE CRYPTO CHRONIC

3 files audited 3 files with Acknowledged findings

ID File SHA256 Checksum

BCC Breeder.sol
dcb67a400cdc20146261e52b56d208fd491ce

1c0fd16172416f46f786ce51bbf

CCP Chronic.sol
d312a66c7c5347e12e1a45adef18cc307a605

2b080c80dd5d976d8bb4d3fac3f

FCC Feeder.sol
e4e38ce31958e2bd8586725eb8cd90325212

846ac98b76f0a99bde3e6bc6995a

AUDIT SCOPE CRYPTO CHRONIC

APPROACH & METHODS CRYPTO CHRONIC

This report has been prepared for Crypto Chronic to discover issues and vulnerabilities in the source code of the Crypto

Chronic project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS CRYPTO CHRONIC

FINDINGS CRYPTO CHRONIC

This report has been prepared to discover issues and vulnerabilities for Crypto Chronic. Through this audit, we have

uncovered 8 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

CCK-01 Centralization Related Risks Centralization Major Acknowledged

BCC-01 Unused Return Value Volatile Code Minor Acknowledged

BCC-02 Weak PRNG Volatile Code Minor Acknowledged

CCK-03
Usage Of transfer / send For Sending

Ether
Volatile Code Minor Resolved

BCC-03 Reusable signature Logical Issue Informational Acknowledged

CCK-04 Missing Error Messages Coding Style Informational Resolved

CCK-05 Missing Emit Events Coding Style Informational Acknowledged

CCP-01 Missing Zero Address Validation Volatile Code Informational Acknowledged

FINDINGS CRYPTO CHRONIC

8
Total Findings

0
Critical

1
Major

0
Medium

3
Minor

4
Informational

CCK-01 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization Major

Breeder.sol: 520, 524, 556, 560, 566, 572, 578, 584, 588, 596,

606, 615, 661, 682; Chronic.sol: 1941, 1947, 1953, 1957, 196

2, 1974, 1986, 1997, 2003, 2015, 2027, 2040, 2111, 2116, 212

6, 2137; Feeder.sol: 442, 446, 451, 455, 479

Acknowledged

Description

In the contract Feeder the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority to pause/resume functionalities of this

contract, set the Chronic contract address, set the fertility price, withdraw ETH from the contract, renounce ownership, and

transfer ownership to a new owner.

Function Internal Calls

Authenticated Role

Function

Function State Variables

Function

Internal Calls

Function State Variables

External Calls

unpause _unpause

_owner

pause

setFertilityPrice

withdraw

setChronicContract

_pause

fertilityPrice

to.transfer

cc

CCK-01 CRYPTO CHRONIC

In the contract Chronic the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority and disable the craft, freeze URI,

pause/resume the contract, set the Breeder contract address, set the Feeder contract address, set the freezer address,

set the initial token value, set the base token URI, set the base image URI, set the base contract URI, craft NFT to anyone,

renounce ownership, and transfer ownership to a new owner.

CCK-01 CRYPTO CHRONIC

Function

State Variables

Authenticated Role

Function

State Variables

Function

State Variables

Function

State Variables

Function

State Variables

External Calls

Function State Variables

External Calls

Function

Function Internal Calls

Function State Variables

Function State Variables

Internal Calls

Function State Variables

Internal Calls

Function State Variables

setFeederAddress

feederAddress

_owner

freezeURI

setInitialTokens

setFreezerAddress

craft

setBaseContractURI

unpause

pause

setBaseTokenURI

disableCraft

setBreederAddress

setBaseImageURI

frozenURI

initialTokens

freezerAddress

otherBC

fertility

genes

_tokenIds.increment

_tokenIds.current

_mint

baseContractURI

_unpause

_pause

baseTokenURI

craftEnabled

breederAddress

baseImageURI

CCK-01 CRYPTO CHRONIC

In the contract Chronic the role freezerAddress has authority over the functions shown in the diagram below. Any

compromise to the freezerAddress account may allow the hacker to take advantage of this authority to unfreezeToken

and setOtherBCtokenId .

Function

State Variables

Internal Calls

Authenticated Role

Function State Variables

Internal Calls

unfreezeToken

fertility

_msgSender

freezerAddress

setOtherBCtokenId otherBC

ownerOf

In the contract Breeder the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority and pause/resume the contract, set the

Chronic contract address, set the breed price, set mint price, set fertility, set series, set layers, set layer value, set layer

part, set weights, create CryptoChronicNFT, breed the gene, withdraw ETH from the contract, renounce ownership, and

transfer ownership to a new owner.

CCK-01 CRYPTO CHRONIC

Function

State Variables

Authenticated Role

Function

State Variables

Function

Internal Calls

Function

External Calls

Function State Variables

Function State Variables

Internal Calls

Function State Variables

Function State Variables

External Calls

Function State Variables

External Calls

Function

Function

State Variables

External Calls

External Calls

Function

External Calls

Function

State Variables

Function

Internal Calls

Internal Calls

setLayer

_layers

_owner

setSeries

pause

createChronics

setLayers

setMintPrice

setFertility

setLayerPart

setWeights

breed

setBreedPrice

withdraw

setChronicContract

unpause

series

_pause

cc.balanceOf

_generate

cc.mint

cc.getInitialTokens

_layers

mintPrice

fertility

_layers

_weights

cc.ownerOf

cc.fertility

_breed

breedPrice

to.transfer

cc

_unpause

CCK-01 CRYPTO CHRONIC

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term, and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

CCK-01 CRYPTO CHRONIC

[Crypto Chronic Team]:

We have improved this issue, albeit to some extent it is congenital to our model. In order to alleviate it, we have implemented

access control with 3 roles and 1 owner. Only the Owner role can set the access control, while only the Finance role can

retrieve ETH from the contract, and only the Admin role can do the setup required by the game. Finally, only the Whitelister

role can setup whitelisting for promo (both now and in the future). Although we commit to further alleviating the issue as soon

as possible, for example by implementing multi-signature wallets and a time-lock with reasonable latency (48H) for

awareness on privileged operations, it cannot be completely eliminated, given that our design requires these privileges to be

in place if we wish to remain true to our vision. Decentralized computing doesn't necessarily need a decentralized market.

While the Blockchain is indeed decentralized, major operators and marketplaces are centralized. They, along with us, aim to

promote consensus and mass adoption of crypto but must make compromises. We believe that current offerings prioritize

decentralization at the expense of democratization due to high costs. Our Unique Value Proposition is to democratize the

market through freemium pricing and a free-to-earn model. To achieve this, we must operate on a private chain, sacrificing

some decentralization in the pursuit of bringing crypto closer to mass adoption.

CCK-01 CRYPTO CHRONIC

BCC-01 UNUSED RETURN VALUE

Category Severity Location Status

Volatile Code Minor Breeder.sol: 621, 636 Acknowledged

Description

The return value of an external call is not stored in a local or state variable.

621 cc.mint(to, gene, 0, 0, fertility);

636 cc.mint(_msgSender(), gene, 0, 0, fertility);

Recommendation

We recommend checking or using the return values of all external function calls.

Alleviation

[Crypto Chronic Team]:

As per Solidity requirement, functions that change the Worldstate/Registry should never return a value, as it's not reliable

data: the reliable part is in the Event emitted. This value has been returned because of development and backend

requirements but is validated using the Event emitted. Hence, there is no need to store the value in a state variable as the

value is already stored by the mint function itself. No changes are required, therefore, as Event should be used to

acknowledge the return value.

BCC-01 CRYPTO CHRONIC

BCC-02 WEAK PRNG

Category Severity Location Status

Volatile Code Minor Breeder.sol: 691 Acknowledged

Description

Weak PRNG due to a modulo on block.timestamp and block.difficulty . These can be influenced by miners to some

extent, so they should be avoided.

691 return uint256(keccak256(abi.encodePacked(block.difficulty, block.

timestamp, (_initialNumber++)))) % number;

Recommendation

Instead of using block.timestamp and block.difficulty as a source of randomness, we recommend using a verifiable

source of randomness, such as Chainlink VRF(https://docs.chain.link/docs/get-a-random-number/), for the purpose of

random number generation.

Alleviation

[Crypto Chronic Team]:

We have alleviated the issue by using PrevranDao instead of Difficulty to improve randomness. In our code there is Difficulty

because the Private Chain doesn't normally support PrevranDao.

BCC-02 CRYPTO CHRONIC

https://docs.chain.link/docs/get-a-random-number/

CCK-03 USAGE OF transfer / send FOR SENDING ETHER

Category Severity Location Status

Volatile Code Minor Breeder.sol: 685; Feeder.sol: 482 Resolved

Description

It is not recommended to use Solidity's transfer() and send() functions for transferring Ether, since some contracts

may not be able to receive the funds. Those functions forward only a fixed amount of gas (2300 specifically) and the

receiving contracts may run out of gas before finishing the transfer. Also, EVM instructions' gas costs may increase in the

future. Thus, some contracts that can receive now may stop working in the future due to the gas limitation.

685 to.transfer(balance);

Breeder.withdraw uses transfer() .

482 to.transfer(balance);

Feeder.withdraw uses transfer() .

Recommendation

We recommend using the Address.sendValue() function from OpenZeppelin.

Since Address.sendValue() may allow reentrancy, we also recommend guarding against reentrancy attacks by utilizing

the Checks-Effects-Interactions Pattern or applying OpenZeppelin ReentrancyGuard.

Alleviation

The client revised the code and resolved the issue by using pull payments of openzeppelin that use an escrow mechanism.

CCK-03 CRYPTO CHRONIC

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.7/contracts/utils/Address.sol#L60
https://docs.soliditylang.org/en/v0.8.15/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.7/contracts/security/ReentrancyGuard.sol

BCC-03 REUSABLE signature

Category Severity Location Status

Logical Issue Informational Breeder.sol: 2221 Acknowledged

Description

While the mintWhitelistedChronic() function requires a signature generated by the whitelist, it does not verify if the

signature has been previously used. Consequently, the signature can be reused, enabling anyone to mint Chronic

with wlPrice by utilizing the same signature .

Recommendation

We would like to confirm with the client if the current implementation aligns with the original project design.

Alleviation

[Crypto Chronic Team]:

We confirm that the current implementation is deliberate and aligns with the original project design. We will manage the

number of mints from the site, but the contract will remain 'free' to be used multiple times within the timeframe in which the

Whitelist is active.

BCC-03 CRYPTO CHRONIC

CCK-04 MISSING ERROR MESSAGES

Category Severity Location Status

Coding Style Informational Breeder.sol: 515; Feeder.sol: 437 Resolved

Description

The require can be used to check for conditions and throw an exception if the condition is not met. It is better to provide a

string message containing details about the error that will be passed back to the caller.

Recommendation

We advise adding error messages to the linked require statements.

Alleviation

The client revised the code and resolved the issue.

CCK-04 CRYPTO CHRONIC

CCK-05 MISSING EMIT EVENTS

Category Severity Location Status

Coding Style Informational Breeder.sol: 556, 584, 588, 606; Feeder.sol: 451 Acknowledged

Description

There should always be events emitted in the sensitive functions that are controlled by centralization roles.

Recommendation

It is recommended emitting events for the sensitive functions that are controlled by centralization roles.

Alleviation

[Crypto Chronic Team]:

We are in the process of reviewing the possibility of emitting events for the sensitive functions that are controlled by

centralization roles and will alleviate the issue as soon as we have finalized the best manner to do so.

CCK-05 CRYPTO CHRONIC

CCP-01 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile Code Informational Chronic.sol: 1934, 1935, 1936 Acknowledged

Description

Addresses should be checked before assignment or external call to make sure they are not zero addresses.

1934 breederAddress = _breederAddress;

_breederAddress is not zero-checked before being used.

1935 feederAddress = _feederAddress;

_feederAddress is not zero-checked before being used.

1936 freezerAddress = _freezerAddress;

_freezerAddress is not zero-checked before being used.

Recommendation

We advise adding a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

[Crypto Chronic Team]:

Being able to always change these addresses as Owner, we didn't want to implement the suggested checks in order to allow

us to 'freeze' the feature during upgrades, assigning it to Address 0. However, we are looking into ways to alleviate the issue

finding an efficient and easy to integrate alternative to adding a Zero-Check for the passed-in address value to prevent

unexpected errors.

CCP-01 CRYPTO CHRONIC

FORMAL VERIFICATION CRYPTO CHRONIC

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal

verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected

behavior.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-721 Compliance

We verified the properties of the public interface of those token contracts that implement the ERC-721 interface without

pause.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc721-balanceof-succeed-normal balanceOf Succeeds on Admissible Inputs

erc721-balanceof-correct-count balanceOf Returns the Correct Value

erc721-supportsinterface-correct-erc721 supportsInterface Signals Support for ERC721

erc721-balanceof-no-change-state balanceOf Does Not Change the Contract's State

erc721-balanceof-revert balanceOf Fails on the Zero Address

erc721-ownerof-succeed-normal ownerOf Succeeds For Valid Tokens

erc721-ownerof-correct-owner ownerOf Returns the Correct Owner

erc721-ownerof-revert ownerOf Fails On Invalid Tokens

erc721-ownerof-no-change-state ownerOf Does Not Change the Contract's State

erc721-transferfrom-succeed-normal transferFrom Succeeds on Admissible Inputs

erc721-getapproved-correct-value getApproved Returns Correct Approved Address

erc721-getapproved-succeed-normal getApproved Succeeds For Valid Tokens

erc721-getapproved-revert-zero getApproved Fails on Invalid Tokens

FORMAL VERIFICATION CRYPTO CHRONIC

Property Name Title

erc721-getapproved-change-state getApproved Does Not Change the Contract's State

erc721-isapprovedforall-succeed-normal isApprovedForAll Always Succeeds

erc721-isapprovedforall-correct isApprovedForAll Returns Correct Approvals

erc721-isapprovedforall-change-state isApprovedForAll Does Not Change the Contract's State

erc721-approve-succeed-normal approve Returns for Admissible Inputs

erc721-approve-set-correct approve Sets Approval

erc721-approve-revert-not-allowed approve Prevents Unpermitted Approvals

erc721-approve-revert-invalid-token approve Fails For Calls with Invalid Tokens

erc721-setapprovalforall-succeed-normal setApprovalForAll Returns for Admissible Inputs

erc721-approve-change-state approve Has No Unexpected State Changes

erc721-setapprovalforall-multiple setApprovalForAll Can Set Multiple Operators

erc721-setapprovalforall-set-correct setApprovalForAll Approves Operator

erc721-setapprovalforall-change-state setApprovalForAll Has No Unexpected State Changes

erc721-transferfrom-correct-one-token-self transferFrom Performs Self Transfers Correctly

erc721-transferfrom-correct-approval transferFrom Updates the Approval Correctly

erc721-transferfrom-correct-increase transferFrom Transfers the Complete Token in Non-self Transfers

erc721-transferfrom-correct-owner-from transferFrom Removes Token Ownership of From

erc721-transferfrom-correct-owner-to transferFrom Transfers Ownership

erc721-transferfrom-correct-balance transferFrom Sum of Balances is Constant

erc721-transferfrom-correct-state-balance transferFrom Keeps Balances Constant Except for From and To

erc721-transferfrom-correct-state-owner transferFrom Has Expected Ownership Changes

erc721-transferfrom-correct-state-approval transferFrom Has Expected Approval Changes

erc721-transferfrom-revert-invalid transferFrom Fails for Invalid Tokens

erc721-transferfrom-revert-from-zero transferFrom Fails for Transfers From the Zero Address

FORMAL VERIFICATION CRYPTO CHRONIC

Property Name Title

erc721-transferfrom-revert-to-zero transferFrom Fails for Transfers To the Zero Address

erc721-supportsinterface-metadata supportsInterface Signals that ERC721Metadata is Implemented

erc721-supportsinterface-succeed-always supportsInterface Always Succeeds

erc721-supportsinterface-correct-erc165 supportsInterface Signals Support for ERC165

erc721-supportsinterface-correct-false supportsInterface Returns False for Id 0xffffffff

erc721-supportsinterface-no-change-state supportsInterface Does Not Change the Contract's State

erc721-transferfrom-revert-not-owned transferFrom Fails if From Is Not Token Owner

erc721-transferfrom-revert-exceed-approval transferFrom Fails for Token Transfers without Approval

Verification of Compliance with Pausable ERC-721

We verified the properties of the public interface of those token contracts that implement the pausable ERC-721 interface.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc721pausable-transferfrom-succeed-normal transferFrom Succeeds on Admissible Inputs

erc721pausable-transferfrom-revert-pause transferFrom Fails when Paused

erc721pausable-supportsinterface-correct-erc721 supportsInterface Signals Support for ERC721

erc721pausable-balanceof-succeed-normal balanceOf Succeeds on Admissible Inputs

erc721pausable-balanceof-correct-count balanceOf Returns the Correct Value

erc721pausable-balanceof-no-change-state balanceOf Does Not Change the Contract's State

erc721pausable-balanceof-revert balanceOf Fails on the Zero Address

erc721pausable-ownerof-succeed-normal ownerOf Succeeds For Valid Tokens

erc721pausable-ownerof-correct-owner ownerOf Returns the Correct Owner

erc721pausable-ownerof-no-change-state ownerOf Does Not Change the Contract's State

erc721pausable-ownerof-revert ownerOf Fails On Invalid Tokens

FORMAL VERIFICATION CRYPTO CHRONIC

Property Name Title

erc721pausable-getapproved-change-state getApproved Does Not Change the Contract's State

erc721pausable-getapproved-succeed-normal getApproved Succeeds For Valid Tokens

erc721pausable-getapproved-correct-value getApproved Returns Correct Approved Address

erc721pausable-getapproved-revert-zero getApproved Fails on Invalid Tokens

erc721pausable-isapprovedforall-change-state isApprovedForAll Does Not Change the Contract's State

erc721pausable-isapprovedforall-succeed-normal isApprovedForAll Always Succeeds

erc721pausable-isapprovedforall-correct isApprovedForAll Returns Correct Approvals

erc721pausable-approve-succeed-normal approve Returns for Admissible Inputs

erc721pausable-approve-set-correct approve Sets Approval

erc721pausable-approve-revert-invalid-token approve Fails For Calls with Invalid Tokens

erc721pausable-approve-revert-not-allowed approve Prevents Unpermitted Approvals

erc721pausable-approve-change-state approve Has No Unexpected State Changes

erc721pausable-setapprovalforall-succeed-normal setApprovalForAll Returns for Admissible Inputs

erc721pausable-setapprovalforall-change-state setApprovalForAll Has No Unexpected State Changes

erc721pausable-setapprovalforall-set-correct setApprovalForAll Approves Operator

erc721pausable-setapprovalforall-multiple setApprovalForAll Can Set Multiple Operators

erc721pausable-transferfrom-correct-increase
transferFrom Transfers the Complete Token in Non-self

Transfers

erc721pausable-transferfrom-correct-one-token-self transferFrom Performs Self Transfers Correctly

erc721pausable-transferfrom-correct-approval transferFrom Updates the Approval Correctly

erc721pausable-transferfrom-correct-owner-from transferFrom Removes Token Ownership of From

erc721pausable-transferfrom-correct-owner-to transferFrom Transfers Ownership

erc721pausable-transferfrom-correct-balance transferFrom Sum of Balances is Constant

FORMAL VERIFICATION CRYPTO CHRONIC

Property Name Title

erc721pausable-transferfrom-correct-state-balance
transferFrom Keeps Balances Constant Except for From

and To

erc721pausable-transferfrom-correct-state-owner transferFrom Has Expected Ownership Changes

erc721pausable-transferfrom-correct-state-approval transferFrom Has Expected Approval Changes

erc721pausable-transferfrom-revert-invalid transferFrom Fails for Invalid Tokens

erc721pausable-transferfrom-revert-from-zero transferFrom Fails for Transfers From the Zero Address

erc721pausable-transferfrom-revert-to-zero transferFrom Fails for Transfers To the Zero Address

erc721pausable-transferfrom-revert-not-owned transferFrom Fails if From Is Not Token Owner

erc721pausable-transferfrom-revert-exceed-approval transferFrom Fails for Token Transfers without Approval

erc721pausable-totalsupply-change-state totalSupply Does Not Change the Contract's State

erc721pausable-supportsinterface-metadata
supportsInterface Signals that ERC721Metadata is

Implemented

erc721pausable-totalsupply-succeed-always totalSupply Always Succeeds

erc721pausable-supportsinterface-enumerable
supportsInterface Signals that ERC721Enumerable is

Implemented

erc721pausable-supportsinterface-succeed-always supportsInterface Always Succeeds

erc721pausable-tokenofownerbyindex-revert
tokenOfOwnerByIndex Correctly Fails on Token Owner

Indices Greater as the Owner Balance

erc721pausable-supportsinterface-correct-erc165 supportsInterface Signals Support for ERC165

erc721pausable-supportsinterface-correct-false supportsInterface Returns False for Id 0xffffffff

erc721pausable-supportsinterface-no-change-state supportsInterface Does Not Change the Contract's State

Verification Results

For the following contracts, model checking established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract ERC721 (projects/CryptoChronic/contracts/Chronic.sol) In Commit
5de987ed3ed354c91e2ed01682aab95c417f7d7c

FORMAL VERIFICATION CRYPTO CHRONIC

Verification of ERC-721 Compliance

Detailed results for function balanceOf

Property Name Final Result Remarks

erc721-balanceof-succeed-normal True

erc721-balanceof-correct-count True

erc721-balanceof-no-change-state True

erc721-balanceof-revert True

Detailed results for function supportsInterface

Property Name Final Result Remarks

erc721-supportsinterface-correct-erc721 True

erc721-supportsinterface-metadata True

erc721-supportsinterface-succeed-always True

erc721-supportsinterface-correct-erc165 True

erc721-supportsinterface-correct-false True

erc721-supportsinterface-no-change-state True

Detailed results for function ownerOf

Property Name Final Result Remarks

erc721-ownerof-succeed-normal True

erc721-ownerof-correct-owner True

erc721-ownerof-revert True

erc721-ownerof-no-change-state True

FORMAL VERIFICATION CRYPTO CHRONIC

Detailed results for function transferFrom

Property Name Final Result Remarks

erc721-transferfrom-succeed-normal True

erc721-transferfrom-correct-one-token-self True

erc721-transferfrom-correct-approval True

erc721-transferfrom-correct-increase True

erc721-transferfrom-correct-owner-from True

erc721-transferfrom-correct-owner-to True

erc721-transferfrom-correct-balance True

erc721-transferfrom-correct-state-balance True

erc721-transferfrom-correct-state-owner True

erc721-transferfrom-correct-state-approval True

erc721-transferfrom-revert-invalid True

erc721-transferfrom-revert-from-zero True

erc721-transferfrom-revert-to-zero True

erc721-transferfrom-revert-not-owned True

erc721-transferfrom-revert-exceed-approval True

Detailed results for function getApproved

Property Name Final Result Remarks

erc721-getapproved-correct-value True

erc721-getapproved-succeed-normal True

erc721-getapproved-revert-zero True

erc721-getapproved-change-state True

FORMAL VERIFICATION CRYPTO CHRONIC

Detailed results for function isApprovedForAll

Property Name Final Result Remarks

erc721-isapprovedforall-succeed-normal True

erc721-isapprovedforall-correct True

erc721-isapprovedforall-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc721-approve-succeed-normal True

erc721-approve-set-correct True

erc721-approve-revert-not-allowed True

erc721-approve-revert-invalid-token True

erc721-approve-change-state True

Detailed results for function setApprovalForAll

Property Name Final Result Remarks

erc721-setapprovalforall-succeed-normal True

erc721-setapprovalforall-multiple True

erc721-setapprovalforall-set-correct True

erc721-setapprovalforall-change-state True

In the remainder of this section, we list all contracts where model checking of at least one property was not successful. There

are several reasons why this could happen:

Model checking reports a counterexample that violates the property. Depending on the counterexample,this occurs if

The specification of the property is too generic and does not accurately capture the intended behavior of

the smart contract. In that case, the counterexample does not indicate a problem in the underlying smart

contract. We report such instances as being "inapplicable".

The property is applicable to the smart contract. In that case, the counterexample showcases a problem

in the smart contract and a correspond finding is reported separately in the Findings section of this

FORMAL VERIFICATION CRYPTO CHRONIC

report. In the following tables, we report such instances as "invalid". The distinction between spurious

and actual counterexamples is done manually by the auditors.

The model checking result is inconclusive. Such a result does not indicate a problem in the underlying smart

contract. An inconclusive result may occur if

The model checking engine fails to construct a proof. This can happen if the logical deductions

necessary are beyond the capabilities of the automated reasoning tool. It is a technical limitation of all

proof engines and cannot be avoided in general.

The model checking engine runs out of time or memory and did not produce a result. This can happen if

automatic abstraction techniques are ineffective or of the state space is too big.

Detailed Results For Contract Chronic (projects/CryptoChronic/contracts/Chronic.sol) In Commit
5de987ed3ed354c91e2ed01682aab95c417f7d7c

FORMAL VERIFICATION CRYPTO CHRONIC

Verification of Compliance with Pausable ERC-721

Detailed results for function transferFrom

Property Name Final Result Remarks

erc721pausable-transferfrom-succeed-normal Inconclusive

erc721pausable-transferfrom-revert-pause Inconclusive

erc721pausable-transferfrom-correct-increase Inconclusive

erc721pausable-transferfrom-correct-one-token-self Inconclusive

erc721pausable-transferfrom-correct-approval Inconclusive

erc721pausable-transferfrom-correct-owner-from Inconclusive

erc721pausable-transferfrom-correct-owner-to Inconclusive

erc721pausable-transferfrom-correct-balance Inconclusive

erc721pausable-transferfrom-correct-state-balance Inconclusive

erc721pausable-transferfrom-correct-state-owner Inconclusive

erc721pausable-transferfrom-correct-state-approval Inconclusive

erc721pausable-transferfrom-revert-invalid Inconclusive

erc721pausable-transferfrom-revert-from-zero Inconclusive

erc721pausable-transferfrom-revert-to-zero Inconclusive

erc721pausable-transferfrom-revert-not-owned Inconclusive

erc721pausable-transferfrom-revert-exceed-approval Inconclusive

FORMAL VERIFICATION CRYPTO CHRONIC

Detailed results for function supportsInterface

Property Name Final Result Remarks

erc721pausable-supportsinterface-correct-erc721 True

erc721pausable-supportsinterface-metadata True

erc721pausable-supportsinterface-enumerable True

erc721pausable-supportsinterface-succeed-always True

erc721pausable-supportsinterface-correct-erc165 True

erc721pausable-supportsinterface-correct-false True

erc721pausable-supportsinterface-no-change-state Inconclusive

Detailed results for function balanceOf

Property Name Final Result Remarks

erc721pausable-balanceof-succeed-normal True

erc721pausable-balanceof-correct-count True

erc721pausable-balanceof-no-change-state Inconclusive

erc721pausable-balanceof-revert True

Detailed results for function ownerOf

Property Name Final Result Remarks

erc721pausable-ownerof-succeed-normal True

erc721pausable-ownerof-correct-owner True

erc721pausable-ownerof-no-change-state Inconclusive

erc721pausable-ownerof-revert True

FORMAL VERIFICATION CRYPTO CHRONIC

Detailed results for function getApproved

Property Name Final Result Remarks

erc721pausable-getapproved-change-state Inconclusive

erc721pausable-getapproved-succeed-normal True

erc721pausable-getapproved-correct-value True

erc721pausable-getapproved-revert-zero True

Detailed results for function isApprovedForAll

Property Name Final Result Remarks

erc721pausable-isapprovedforall-change-state Inconclusive

erc721pausable-isapprovedforall-succeed-normal True

erc721pausable-isapprovedforall-correct True

Detailed results for function approve

Property Name Final Result Remarks

erc721pausable-approve-succeed-normal True

erc721pausable-approve-set-correct True

erc721pausable-approve-revert-invalid-token True

erc721pausable-approve-revert-not-allowed True

erc721pausable-approve-change-state Inconclusive

FORMAL VERIFICATION CRYPTO CHRONIC

Detailed results for function setApprovalForAll

Property Name Final Result Remarks

erc721pausable-setapprovalforall-succeed-normal True

erc721pausable-setapprovalforall-change-state Inconclusive

erc721pausable-setapprovalforall-set-correct True

erc721pausable-setapprovalforall-multiple True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc721pausable-totalsupply-change-state Inconclusive

erc721pausable-totalsupply-succeed-always True

Detailed results for function tokenOfOwnerByIndex

Property Name Final Result Remarks

erc721pausable-tokenofownerbyindex-revert True

FORMAL VERIFICATION CRYPTO CHRONIC

APPENDIX CRYPTO CHRONIC

Finding Categories

Categories Description

Centralization

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Coding Style
Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Technical description

Some Solidity smart contracts from this project have been formally verified using symbolic model checking. Each such

contract was compiled into a mathematical model which reflects all its possible behaviors with respect to the property. The

model takes into account the semantics of the Solidity instructions found in the contract. All verification results that we report

are based on that model.

The model also formalizes a simplified execution environment of the Ethereum blockchain and a verification harness that

performs the initialization of the contract and all possible interactions with the contract. Initially, the contract state is initialized

non-deterministically (i.e. by arbitrary values) and over-approximates the reachable state space of the contract throughout

any actual deployment on chain. All valid results thus carry over to the contract's behavior in arbitrary states after it has been

deployed.

Assumptions and simplifications

The following assumptions and simplifications apply to our model:

APPENDIX CRYPTO CHRONIC

Gas consumption is not taken into account, i.e. we assume that executions do not terminate prematurely because

they run out of gas.

The contract's state variables are non-deterministically initialized before invocation of any of those functions. That

ignores contract invariants and may lead to false positives. It is, however, a safe over-approximation.

The verification engine reasons about unbounded integers. Machine arithmetic is modeled as operations on the

congruence classes arising from the bit-width of the underlying numeric type. This ensures that over- and underflow

characteristics are faithfully represented.

Certain low-level calls and inline assembly are not supported and may lead to an ERC-20 token contract not being

formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property definitions

All properties are expressed in linear temporal logic (LTL). For that matter, we treat each invocation of and each return from a

public or an external function as a discrete time steps. Our analysis reasons about the contract's state upon entering and

upon leaving public or external functions.

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

started(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond .

willSucceed(f, [cond]) Indicates an invocation of contract function f within a state satisfying formula cond

and considers only those executions that do not revert.

finished(f, [cond]) Indicates that execution returns from contract function f in a state satisfying formula

cond . Here, formula cond may refer to the contract's state variables and to the value they had upon entering the

function (using the old function).

reverted(f, [cond]) Indicates that execution of contract function f was interrupted by an exception in a

contract state satisfying formula cond .

The verification performed in this audit operates on a harness that non-deterministically invokes a function of the contract's

public or external interface. All formulas are analyzed w.r.t. the trace that corresponds to this function invocation.

Description of ERC-20 Properties

The specifications are designed such that they capture the desired and admissible behaviors of the ERC-20 functions

transfer , transferFrom , approve , allowance , balanceOf , and totalSupply .

In the following, we list those property specifications.

Properties for ERC-20 function transfer

APPENDIX CRYPTO CHRONIC

erc20-transfer-revert-zero

Function transfer Prevents Transfers to the Zero Address.

Any call of the form transfer(recipient, amount) must fail if the recipient address is the zero address.

Specification:

 [](started(contract.transfer(to, value), to == address(0))

 ==> <>(reverted(contract.transfer) || finished(contract.transfer(to, value),

 !return)))

erc20-transfer-succeed-normal

Function transfer Succeeds on Admissible Non-self Transfers.

All invocations of the form transfer(recipient, amount) must succeed and return true if

the recipient address is not the zero address,

amount does not exceed the balance of address msg.sender ,

transferring amount to the recipient address does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call.

Specification:

 [](started(contract.transfer(to, value), to != address(0)

 && to != msg.sender && value >= 0 && value <= _balances[msg.sender]

 && _balances[to] + value <= type(uint256).max && _balances[to] >= 0

 && _balances[msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return)))

erc20-transfer-succeed-self

Function transfer Succeeds on Admissible Self Transfers.

All self-transfers, i.e. invocations of the form transfer(recipient, amount) where the recipient address equals the

address in msg.sender must succeed and return true if

the value in amount does not exceed the balance of msg.sender and

the supplied gas suffices to complete the call.

Specification:

APPENDIX CRYPTO CHRONIC

 [](started(contract.transfer(to, value), to != address(0)

 && to == msg.sender && value >= 0 && value <= _balances[msg.sender]

 && _balances[msg.sender] >= 0

 && _balances[msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return)))

erc20-transfer-correct-amount

Function transfer Transfers the Correct Amount in Non-self Transfers.

All non-reverting invocations of transfer(recipient, amount) that return true must subtract the value in amount from

the balance of msg.sender and add the same value to the balance of the recipient address.

Specification:

 [](willSucceed(contract.transfer(to, value), to != msg.sender

 && _balances[to] >= 0 && value >= 0

 && _balances[to] + value <= type(uint256).max

 && _balances[msg.sender] >= 0 && _balances[msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return

 ==> _balances[msg.sender] == old(_balances[msg.sender]) - value

 && _balances[to] == old(_balances[to]) + value)))

erc20-transfer-correct-amount-self

Function transfer Transfers the Correct Amount in Self Transfers.

All non-reverting invocations of transfer(recipient, amount) that return true and where the recipient address

equals msg.sender (i.e. self-transfers) must not change the balance of address msg.sender .

Specification:

 [](willSucceed(contract.transfer(to, value), to == msg.sender

 && _balances[to] >= 0 && _balances[to] <= type(uint256).max)

 ==> <>(finished(contract.transfer(to, value), return

 ==> _balances[to] == old(_balances[to]))))

erc20-transfer-change-state

Function transfer Has No Unexpected State Changes.

All non-reverting invocations of transfer(recipient, amount) that return true must only modify the balance entries of

the msg.sender and the recipient addresses.

Specification:

APPENDIX CRYPTO CHRONIC

 [](willSucceed(contract.transfer(to, value), p1 != msg.sender && p1 != to)

 ==> <>(finished(contract.transfer(to, value), return

 ==> (_totalSupply == old(_totalSupply) && _allowances == old(_allowances)

 && _balances[p1] == old(_balances[p1])))))

erc20-transfer-exceed-balance

Function transfer Fails if Requested Amount Exceeds Available Balance.

Any transfer of an amount of tokens that exceeds the balance of msg.sender must fail.

Specification:

 [](started(contract.transfer(to, value), value > _balances[msg.sender]

 && _balances[msg.sender] >= 0 && value <= type(uint256).max)

 ==> <>(reverted(contract.transfer) || finished(contract.transfer(to, value),

 !return)))

erc20-transfer-recipient-overflow

Function transfer Prevents Overflows in the Recipient's Balance.

Any invocation of transfer(recipient, amount) must fail if it causes the balance of the recipient address to overflow.

Specification:

 [](started(contract.transfer(to, value), to != msg.sender

 && _balances[to] + value > type(uint256).max

 && _balances[to] >= 0 && _balances[to] <= type(uint256).max

 && _balances[msg.sender] <= type(uint256).max

 && value > 0 && value <= _balances[msg.sender])

 ==> <>(reverted(contract.transfer) || finished(contract.transfer(to, value),

 !return) || finished(contract.transfer(to, value), _balances[to]

 > old(_balances[to]) + value - type(uint256).max - 1)))

erc20-transfer-false

If Function transfer Returns false , the Contract State Has Not Been Changed.

If the transfer function in contract contract fails by returning false , it must undo all state changes it incurred before

returning to the caller.

Specification:

APPENDIX CRYPTO CHRONIC

 [](willSucceed(contract.transfer(to, value))

 ==> <>(finished(contract.transfer(to, value), !return]

 ==> (_balances == old(_balances) && _totalSupply == old(_totalSupply)

 && _allowances == old(_allowances)))))

erc20-transfer-never-return-false

Function transfe Never Returns false .

The transfer function must never return false to signal a failure.

Specification:

 [](!(finished(contract.transfer, !return)))

Properties for ERC-20 function transferFrom

erc20-transferfrom-revert-from-zero

Function transferFrom Fails for Transfers From the Zero Address.

All calls of the form transferFrom(from, dest, amount) where the from address is zero, must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), from == address(0))

 ==> <>(reverted(contract.transferFrom) || finished(contract.transferFrom,

 !return)))

erc20-transferfrom-revert-to-zero

Function transferFrom Fails for Transfers To the Zero Address.

All calls of the form transferFrom(from, dest, amount) where the dest address is zero, must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), to == address(0))

 ==> <>(reverted(contract.transferFrom) || finished(contract.transferFrom,

 !return)))

erc20-transferfrom-succeed-normal

Function transferFrom Succeeds on Admissible Non-self Transfers. All invocations of transferFrom(from, dest,

amount) must succeed and return true if

the value of amount does not exceed the balance of address from ,

APPENDIX CRYPTO CHRONIC

the value of amount does not exceed the allowance of msg.sender for address from ,

transferring a value of amount to the address in dest does not lead to an overflow of the recipient's balance, and

the supplied gas suffices to complete the call.

Specification:

 [](started(contract.transferFrom(from, to, value), from != address(0)

 && to != address(0) && from != to && value <= _balances[from]

 && value <= _allowances[from][msg.sender]

 && _balances[to] + value <= type(uint256).max

 && value >= 0 && _balances[to] >= 0 && _balances[from] >= 0

 && _balances[from] <= type(uint256).max

 && _allowances[from][msg.sender] >= 0

 && _allowances[from][msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return)))

erc20-transferfrom-succeed-self

Function transferFrom Succeeds on Admissible Self Transfers.

All invocations of transferFrom(from, dest, amount) where the dest address equals the from address (i.e. self-

transfers) must succeed and return true if:

The value of amount does not exceed the balance of address from ,

the value of amount does not exceed the allowance of msg.sender for address from , and

the supplied gas suffices to complete the call.

Specification:

 [](started(contract.transferFrom(from, to, value), from != address(0)

 && from == to && value <= _balances[from]

 && value <= _allowances[from][msg.sender]

 && value >= 0 && _balances[from] <= type(uint256).max

 && _allowances[from][msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return)))

erc20-transferfrom-correct-amount

Function transferFrom Transfers the Correct Amount in Non-self Transfers.

All invocations of transferFrom(from, dest, amount) that succeed and that return true subtract the value in amount

from the balance of address from and add the same value to the balance of address dest .

Specification:

APPENDIX CRYPTO CHRONIC

 [](willSucceed(contract.transferFrom(from, to, value), from != to && value >= 0

 && _balances[from] >= 0 && _balances[from] <= type(uint256).max

 && _balances[to] >= 0 && _balances[to] + value <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return

 ==> _balances[from] == old(_balances[from]) - value

 && _balances[to] == old(_balances[to] + value))))

erc20-transferfrom-correct-amount-self

Function transferFrom Performs Self Transfers Correctly.

All non-reverting invocations of transferFrom(from, dest, amount) that return true and where the address in from

equals the address in dest (i.e. self-transfers) do not change the balance entry of the from address (which equals

dest).

Specification:

 [](willSucceed(contract.transferFrom(from, to, value), from == to

 && value >= 0 && value <= type(uint256).max && _balances[from] >= 0

 && _balances[from] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return

 ==> _balances[from] == old(_balances[from]))))

erc20-transferfrom-correct-allowance

Function transferFrom Updated the Allowance Correctly.

All non-reverting invocations of transferFrom(from, dest, amount) that return true must decrease the allowance for

address msg.sender over address from by the value in amount .

Specification:

 [](willSucceed(contract.transferFrom(from, to, value), value >= 0

 && value <= type(uint256).max && _balances[from] >= 0

 && _balances[from] <= type(uint256).max && _balances[to] >= 0

 && _balances[to] <= type(uint256).max && _allowances[from][msg.sender] >= 0

 && _allowances[from][msg.sender] <= type(uint256).max)

 ==> <>(finished(contract.transferFrom(from, to, value), return

 ==> ((_allowances[from][msg.sender]

 == old(_allowances[from][msg.sender]) - value)

 || (_allowances[from][msg.sender]

 == old(_allowances[from][msg.sender])

 && (from == msg.sender

 || old(_allowances[from][msg.sender])

 == type(uint256).max))))))

erc20-transferfrom-change-state

APPENDIX CRYPTO CHRONIC

Function transferFrom Has No Unexpected State Changes.

All non-reverting invocations of transferFrom(from, dest, amount) that return true may only modify the following state

variables:

The balance entry for the address in dest ,

The balance entry for the address in from ,

The allowance for the address in msg.sender for the address in from . Specification:

 [](willSucceed(contract.transferFrom(from, to, amount), p1 != from && p1 != to

 && (p2 != from || p3 != msg.sender))

 ==> <>(finished(contract.transferFrom(from, to, amount), return

 ==> (_totalSupply == old(_totalSupply) && _balances[p1] == old(_balances[p1])

 && _allowances[p2][p3] == old(_allowances[p2][p3])))))

erc20-transferfrom-fail-exceed-balance

Function transferFrom Fails if the Requested Amount Exceeds the Available Balance.

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the balance of address

from must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), value > _balances[from]

 && _balances[from] >= 0 && _balances[from] <= type(uint256).max)

 ==> <>(reverted(contract.transferFrom)

 || finished(contract.transferFrom, !return)))

erc20-transferfrom-fail-exceed-allowance

Function transferFrom Fails if the Requested Amount Exceeds the Available Allowance.

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the allowance of address

msg.sender must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), value > _allowances[from]

[msg.sender]

 && _allowances[from][msg.sender] >= 0 && value <= type(uint256).max)

 ==> <>(reverted(contract.transferFrom)

 || finished(contract.transferFrom(from, to, value), !return)

 || finished(contract.transferFrom(from, to, value), return

 && (msg.sender == from

 || _allowances[from][msg.sender] == type(uint256).max))))

APPENDIX CRYPTO CHRONIC

erc20-transferfrom-fail-recipient-overflow

Function transferFrom Prevents Overflows in the Recipient's Balance.

Any call of transferFrom(from, dest, amount) with a value in amount whose transfer would cause an overflow of the

balance of address dest must fail.

Specification:

 [](started(contract.transferFrom(from, to, value), from != to

 && _balances[to] + value > type(uint256).max && value <= type(uint256).max

 && _balances[to] >= 0 && _balances[to] <= type(uint256).max)

 ==> <>(reverted(contract.transferFrom)

 || finished(contract.transferFrom(from, to, value), !return)

 || finished(contract.transferFrom(from, to, value), _balances[to]

 > old(_balances[to]) + value - type(uint256).max - 1)))

erc20-transferfrom-false

If Function transferFrom Returns false , the Contract's State Has Not Been Changed.

If transferFrom returns false to signal a failure, it must undo all incurred state changes before returning to the caller.

Specification:

 [](willSucceed(contract.transfer(to, value))

 ==> <>(finished(contract.transfer(to, value), !return

 ==> (_balances == old(_balances) && _totalSupply == old(_totalSupply)

 && _allowances == old(_allowances)))))

erc20-transferfrom-never-return-false

Function transferFrom Never Returns false .

The transferFrom function must never return false .

Specification:

 [](!(finished(contract.transferFrom, !return)))

Properties related to function totalSupply

erc20-totalsupply-succeed-always

Function totalSupply Always Succeeds.

The function totalSupply must always succeeds, assuming that its execution does not run out of gas.

APPENDIX CRYPTO CHRONIC

Specification:

 [](started(contract.totalSupply) ==> <>(finished(contract.totalSupply)))

erc20-totalsupply-correct-value

Function totalSupply Returns the Value of the Corresponding State Variable.

The totalSupply function must return the value that is held in the corresponding state variable of contract contract.

Specification:

 [](willSucceed(contract.totalSupply)

 ==> <>(finished(contract.totalSupply, return == _totalSupply)))

erc20-totalsupply-change-state

Function totalSupply Does Not Change the Contract's State.

The totalSupply function in contract contract must not change any state variables.

Specification:

 [](willSucceed(contract.totalSupply)

 ==> <>(finished(contract.totalSupply, _totalSupply == old(_totalSupply)

 && _balances == old(_balances) && _allowances == old(_allowances))))

Properties related to function balanceOf

erc20-balanceof-succeed-always

Function balanceOf Always Succeeds.

Function balanceOf must always succeed if it does not run out of gas.

Specification:

 [](started(contract.balanceOf) ==> <>(finished(contract.balanceOf)))

erc20-balanceof-correct-value

Function balanceOf Returns the Correct Value.

Invocations of balanceOf(owner) must return the value that is held in the contract's balance mapping for address owner .

Specification:

APPENDIX CRYPTO CHRONIC

 [](willSucceed(contract.balanceOf)

 ==> <>(finished(contract.balanceOf(owner), return == _balances[owner])))

erc20-balanceof-change-state

Function balanceOf Does Not Change the Contract's State.

Function balanceOf must not change any of the contract's state variables.

Specification:

 [](willSucceed(contract.balanceOf)

 ==> <>(finished(contract.balanceOf(owner), _totalSupply == old(_totalSupply)

 && _balances == old(_balances)

 && _allowances == old(_allowances))))

Properties related to function allowance

erc20-allowance-succeed-always

Function allowance Always Succeeds.

Function allowance must always succeed, assuming that its execution does not run out of gas.

Specification:

 [](started(contract.allowance) ==> <>(finished(contract.allowance)))

erc20-allowance-correct-value

Function allowance Returns Correct Value.

Invocations of allowance(owner, spender) must return the allowance that address spender has over tokens held by

address owner .

Specification:

 [](willSucceed(contract.allowance(owner, spender))

 ==> <>(finished(contract.allowance(owner, spender),

 return == _allowances[owner][spender])))

erc20-allowance-change-state

Function allowance Does Not Change the Contract's State.

Function allowance must not change any of the contract's state variables.

APPENDIX CRYPTO CHRONIC

Specification:

 [](willSucceed(contract.allowance(owner, spender))

 ==> <>(finished(contract.allowance(owner, spender),

 _totalSupply == old(_totalSupply) && _balances == old(_balances)

 && _allowances == old(_allowances))))

Properties related to function approve

erc20-approve-revert-zero

Function approve Prevents Giving Approvals For the Zero Address.

All calls of the form approve(spender, amount) must fail if the address in spender is the zero address.

Specification:

 [](started(contract.approve(spender, value), spender == address(0))

 ==> <>(reverted(contract.approve)

 || finished(contract.approve(spender, value), !return)))

erc20-approve-succeed-normal

Function approve Succeeds for Admissible Inputs.

All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas.

Specification:

 [](started(contract.approve(spender, value), spender != address(0))

 ==> <>(finished(contract.approve(spender, value), return)))

erc20-approve-correct-amount

Function approve Updates the Approval Mapping Correctly.

All non-reverting calls of the form approve(spender, amount) that return true must correctly update the allowance

mapping according to the address msg.sender and the values of spender and amount .

Specification:

APPENDIX CRYPTO CHRONIC

 [](willSucceed(contract.approve(spender, value), spender != address(0)

 && value >= 0 && value <= type(uint256).max)

 ==> <>(finished(contract.approve(spender, value), return

 ==> _allowances[msg.sender][spender] == value)))

erc20-approve-change-state

Function approve Has No Unexpected State Changes.

All calls of the form approve(spender, amount) must only update the allowance mapping according to the address

msg.sender and the values of spender and amount and incur no other state changes.

Specification:

 [](willSucceed(contract.approve(spender, value), spender != address(0)

 && (p1 != msg.sender || p2 != spender))

 ==> <>(finished(contract.approve(spender, value), return

 ==> _totalSupply == old(_totalSupply) && _balances == old(_balances)

 && _allowances[p1][p2] == old(_allowances[p1][p2]))))

erc20-approve-false

If Function approve Returns false , the Contract's State Has Not Been Changed.

If function approve returns false to signal a failure, it must undo all state changes that it incurred before returning to the

caller.

Specification:

 [](willSucceed(contract.approve(spender, value))

 ==> <>(finished(contract.approve(spender, value), !return

 ==> (_balances == old(_balances) && _totalSupply == old(_totalSupply)

 && _allowances == old(_allowances)))))

erc20-approve-never-return-false

Function approve Never Returns false .

The function approve must never returns false .

Specification:

 [](!(finished(contract.approve, !return)))

APPENDIX CRYPTO CHRONIC

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER CRYPTO CHRONIC

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER CRYPTO CHRONIC

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Crypto Chronic Security Assessment CertiK Assessed on Jun 29th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

